Erforschung und Evaluation von organischen Laminaten für Verbindungskonzepte in Multi-Chip-Modulen (EVOLVE)
Third party funded individual grant
Acronym:
EVOLVE
Start date :
01.01.2022
End date :
31.12.2024
Project details
Scientific Abstract
Innovative, smart electronic systems usually only become intelligent, i.e. smart, through networking and the use of AI. On the one hand, this entails the need for a much higher-performance connection of the components within the system, and on the other hand for high-performance networking of a large number of such systems. While the connection of the computing unit (DSP, FPGA or similar) to its periphery is crucial for the first aspect, a very high-performance connection structure between the computing unit and the interface to the transport network is particularly necessary for high-rate networking. Here, the interface often implements the transition from the electrical domain to optical transmission. In order to make the required data rates between the computing unit and the interface physically possible, new construction and connection technologies are required, together with new efficient connection structures. In particular, the enormous analog bandwidth of 110GHz required for this calls for new innovative approaches here.
Modern manufacturing technologies such as organic multi-chip modules (MCM) allow the necessary high degree of integration of a wide variety of components on a common system level. For many application areas, such as mobile communications and optical data communications, the connection of digital signal processors (DSPs) and memory blocks or interface components on a common carrier material (interposer) represents a decisive advantage. This is being investigated as part of the project.
Involved:
Contributing FAU Organisations:
Funding Source