Tuna C, Akat A, Bicer HN, Walther A, Habets EA (2023)
Publication Type: Conference contribution
Publication year: 2023
Publisher: European Acoustics Association, EAA
Conference Proceedings Title: Proceedings of Forum Acusticum
Event location: Torino, ITA
ISBN: 9788888942674
Knowing the room geometry may be very beneficial for many audio applications, including sound reproduction, acoustic scene analysis, and sound source localization. Room geometry inference (RGI) deals with the problem of reflector localization (RL) based on a set of room impulse responses (RIRs). Motivated by the increasing popularity of commercially available soundbars, this article presents a data-driven 3D RGI method using RIRs measured from a linear loudspeaker array to a single microphone. A convolutional recurrent neural network (CRNN) is trained using simulated RIRs in a supervised fashion for RL. The Radon transform, which is equivalent to delay- and-sum beamforming, is applied to multi-channel RIRs, and the resulting time-domain acoustic beamforming map is fed into the CRNN. The room geometry is inferred from the microphone position and the reflector locations estimated by the network. The results obtained using measured RIRs show that the proposed data-driven approach generalizes well to unseen RIRs and achieves an accuracy level comparable to a baseline model-driven RGI method that involves intermediate semi-supervised steps, thereby offering a unified and fully automated RGI framework.
APA:
Tuna, C., Akat, A., Bicer, H.N., Walther, A., & Habets, E.A. (2023). DATA-DRIVEN 3D ROOM GEOMETRY INFERENCE WITH A LINEAR LOUDSPEAKER ARRAY AND A SINGLE MICROPHONE. In Proceedings of Forum Acusticum. Torino, ITA: European Acoustics Association, EAA.
MLA:
Tuna, Cagdas, et al. "DATA-DRIVEN 3D ROOM GEOMETRY INFERENCE WITH A LINEAR LOUDSPEAKER ARRAY AND A SINGLE MICROPHONE." Proceedings of the 10th Convention of the European Acoustics Association, EAA 2023, Torino, ITA European Acoustics Association, EAA, 2023.
BibTeX: Download