Abstract: Leveraging Image Captions for Selective Whole Slide Image Annotation

Qiu J, Aubreville M, Wilm F, Öttl M, Utz J, Schlereth M, Breininger K (2025)


Publication Type: Conference contribution

Publication year: 2025

Journal

Publisher: Springer Vieweg

Series: Informatik aktuell

City/Town: Wiesbaden

Pages Range: 268-268

Conference Proceedings Title: Bildverarbeitung für die Medizin 2025

Event location: Regensburg DE

ISBN: 9783658474218

DOI: 10.1007/978-3-658-47422-5_59

Abstract

Obtaining dense annotations for histopathological whole-slide images (WSI), such as segmentation masks or mitotic figure identification, is a labor intensive process due to the large image size and the extensive manual effort required for annotation. Identifying informative regions in WSIs for annotation while leaving other regions unlabeled can significantly reduce the annotation effort. These selected annotation regions should contain valuable training information that allows proper model training without significantly impacting performance compared to full annotation.

Authors with CRIS profile

Involved external institutions

How to cite

APA:

Qiu, J., Aubreville, M., Wilm, F., Öttl, M., Utz, J., Schlereth, M., & Breininger, K. (2025). Abstract: Leveraging Image Captions for Selective Whole Slide Image Annotation. In Bildverarbeitung für die Medizin 2025 (pp. 268-268). Regensburg, DE: Wiesbaden: Springer Vieweg.

MLA:

Qiu, Jingna, et al. "Abstract: Leveraging Image Captions for Selective Whole Slide Image Annotation." Proceedings of the German Conference on Medical Image Computing, Regensburg Wiesbaden: Springer Vieweg, 2025. 268-268.

BibTeX: Download