Qiu J, Aubreville M, Wilm F, Öttl M, Utz J, Schlereth M, Breininger K (2025)
Publication Type: Conference contribution
Publication year: 2025
Publisher: Springer Vieweg
Series: Informatik aktuell
City/Town: Wiesbaden
Pages Range: 268-268
Conference Proceedings Title: Bildverarbeitung für die Medizin 2025
ISBN: 9783658474218
DOI: 10.1007/978-3-658-47422-5_59
Obtaining dense annotations for histopathological whole-slide images (WSI), such as segmentation masks or mitotic figure identification, is a labor intensive process due to the large image size and the extensive manual effort required for annotation. Identifying informative regions in WSIs for annotation while leaving other regions unlabeled can significantly reduce the annotation effort. These selected annotation regions should contain valuable training information that allows proper model training without significantly impacting performance compared to full annotation.
APA:
Qiu, J., Aubreville, M., Wilm, F., Öttl, M., Utz, J., Schlereth, M., & Breininger, K. (2025). Abstract: Leveraging Image Captions for Selective Whole Slide Image Annotation. In Bildverarbeitung für die Medizin 2025 (pp. 268-268). Regensburg, DE: Wiesbaden: Springer Vieweg.
MLA:
Qiu, Jingna, et al. "Abstract: Leveraging Image Captions for Selective Whole Slide Image Annotation." Proceedings of the German Conference on Medical Image Computing, Regensburg Wiesbaden: Springer Vieweg, 2025. 268-268.
BibTeX: Download